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 ABSTRACT  

 
Environmental research has focused on monitoring, assessing and predicting the impact of 

environmental agents on human beings and animals. The study of spatial distribution of the environmental 

agents requires the use of geospatial analysis and modelling. The outputs from the geospatial analysis and 

modelling are prone to possible errors in the model inputs and model parameters. The uncertainty in the outputs 

of the geospatial analysis and modelling should be quantified and provided for decision makers to effectively 

make choices or decisions related to, for example, mitigation or treatment that can have strong effects on human 

and animals. 

In the context of this research, uncertainty is defined as an interval around a value such that any 

repetition of estimating this value will produce a new result that mainly lies within this interval. Different 

sources of uncertainties in geospatial modelling can be categorized into four main sources: (1) Input 

uncertainty; (2) Model parameter uncertainty; (3) Model structure uncertainty and (4) Model solution 

uncertainty. In this research, the questions of how to quantify model input, model parameter uncertainties and 

their propagation through environmental models were addressed. 

The Monte Carlo uncertainty analysis method was used in this research. The idea of the Monte Carlo 

method is to repeatedly compute results of the model, with inputs that are randomly sampled from their 

probability distributions. These inputs can be the model inputs and/or the model parameters and/or error in the 

model structure. The model outputs form a random sample of the output probability distribution. Analysing this 

sample distribution by computing its mean and its standard deviation represents the level of uncertainty about 

model outputs, provided that the sample is large enough. 

A case study of using a spatial linear regression model to predict the emission of air pollutant, i.e. soil 

nitrous oxide was used to illustrate the application of the Monte Carlo method to quantify uncertainty 

propagation to the prediction outcomes. The linear regression model calculates soil nitrous oxide emission as a 

function of many factors, including climate variables (e.g. monthly precipitation, minimum temperature), water-

pH, soil organic carbon content, nitrogen deposition and vegetation types. The main results of this case study 

indicate that: (1) The developed statistical models are sufficient to quantify uncertainty about the model inputs 

and model parameters; (2) Uncertainty about nitrous oxide estimate is expressed by the standard deviation of 

the prediction outcomes that varies over the study area; (3) Uncertainty in the regression model is the most 

important source of error that propagates to the uncertainty in the prediction of soil nitrous oxide emission. 
 

 

1. INTRODUCTION 

 

Environmental research has focused on monitoring, assessing and predicting the impact 

of environmental agents on human beings and animals. The study of spatial distribution of 

the environmental agents requires the use of geospatial analysis and modelling. The outputs 

from the geospatial analysis and modelling are often prone to errors in the model inputs and 

model parameters. Errors of the model inputs and the model parameters can come from the 

combined effects of measurement errors, sampling, interpolation and rescaling errors (Brown 

& Heuvelink, 2007). The resulting errors in the outputs cause uncertainty about the spatial 
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distribution and hence, about the adverse impact of a certain environmental agent. This 

uncertainty should be quantified and provided for decision makers to effectively make 

choices or decisions related to, for example, mitigation or treatment strategies that can have 

strong effects on human and animals. 

 

Several approaches have been used for uncertainty quantification in geospatial analysis 

and modelling, depending on the aim of the study, the various types of spatial datasets and 

their attributes (Longley et al., 2006; Attoh-Okine and Ayyub, 2005). For example, Linkov 

and Burmistrov (2003) investigate model uncertainty that includes the problem formulation, 

the model implementation and the parameter selection by comparing the outcomes from 

different models developed for the same environmental agent, i.e. radionuclide concentration. 

A probabilistic framework of which probability distribution function (pdf) is used for 

uncertainty representation about environmental variables is recommended by Heuvelink et al. 

(2007). Recently, experts’ judgements have been also used for uncertainty quantification of 

spatial variation of soil properties (Truong and Heuvelink, 2013). 

 

In this research, a probabilistic framework for uncertainty representation was applied, 

of which uncertainty is defined as an interval around a value such that any repetition of 

estimating this value will produce a new result that mainly lies within this interval. Different 

sources of uncertainties in geospatial modelling can be categorized into four main sources: 

(1) Input uncertainty; (2) Model parameter uncertainty; (3) Model structure uncertainty and 

(4) Model solution uncertainty (Heuvelink, 1998). The questions of how to quantify model 

input, model parameter uncertainties and their propagation through environmental models 

using Monte Carlo method were addressed in this study. 

 

 

2.  METHODS 

 

The idea of the Monte Carlo method is to repeatedly compute results of the model, with 

inputs that are randomly sampled from their probability distributions. These inputs can be the 

model inputs and/or the model parameters and/or error in the model structure. The model 

outputs form a random sample of the output probability distribution. Analysing this sample 

distribution by computing its mean and its standard deviation (std) represents the level of 

uncertainty about model outputs, provided that the sample is large enough. Figure 1 outlines 

the three main steps that were followed in uncertainty propagation analysis using Monte 

Carlo method. 

Figure 1. Three main steps of Monte Carlo uncertainty analysis 

 

 

3. CASE STUDY 

 

To illustrate the application of the Monte Carlo method, a case study of using spatial 
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linear regression model to predict the emission of air pollutant, i.e. soil nitrous oxide (N2O) 

from natural areas in Sweden was selected. A sub-model of the European INTEGRATOR 

model (Reis et al., 2007) was used to predict N2O soil emission (kgN/ha/yr) from those 

natural areas. The linear regression model (Equation 1) calculates soil nitrous oxide emission 

as a function of many environmental factors, including climate variables (e.g. monthly 

precipitation, minimum temperature), water-pH, soil organic carbon content, nitrogen 

deposition and vegetation types. 

LogN2O = 0 + 1*P + 2*(Fraction T<0) + 3*log(Ndep) + 4*(pH) + 5*Organic-C + 

6*(vegetation: deciduous)   (1) 

Where: i are regression coefficients; climate variables: P is mean monthly precipitation over 

the measuring period (mm) and fraction T<0 = fraction of months with minimum T<0°C over 

the measuring period; Soil variables as derived from WISE & SPADE databases, averaged 

over the 0-20 cm layer: pH is pH-H2O (all different pH values are converted to pH-H2O using 

regressions) and organic C is OC content (g/kg soil); Deposition variable as derived from 

European Monitoring and Evaluation Programme (EMEP): Ndep is Nitrogen deposition 

(kgN/ha.yr); Vegetation types include: deciduous forest, coniferous forest, short vegetation 

(incl. heath and grass) and mixed woodland. Regression kriging (Hengl et al., 2007) was use 

for mapping and quantifying uncertainty about the model inputs: pH and OC; and simple 

kriging was used for the regression residual. The uncertainty about the regression coefficients 

was quantified by the pdf. Uncertainty propagation analysis was done via Monte Carlo of 

which the uncertainty contribution of each parameter was calculated. 

 

 

4. RESULTS AND DISCUSSION 

 

4.1.  pH uncertainty 

 

 Figure 2 shows the simulated map of pH and the std of pH value over the natural areas 

in Sweden. The pH value over those areas falls in the acidity range that reaches its maximum 

value of 6 at some small areas. The std value is higher (from about 0.7 to 1.0) in the southern 

areas. 

 

 
Figure 2. pH simulated map (left) and standard deviation (right) 
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4.2.  OC uncertainty 

 

 Simulated map of organic C and the std of organic C values over the natural areas in 

Sweden are shown in Figure 3. The organic C is high in the western part of the areas, 

reaching its maximum value of about 55 g/kg soil. The std value that indicates the uncertain 

level about OC value fairly varies across the natural areas; its value ranges from about 7 to 32 

g/kg soil. 

 
Figure 3. OC simulated map (left) and standard deviation (right) 

 

4.3.  Model parameter uncertainty  

 

 Equation 2 presents the fitted linear regression model that describes the relationship 

between LogN2O and other variables (Section 3). This model was calibrated by the data 

cover whole European member countries. 

LogN2O = 0.133 – 0.007*P + 1.537*(FractionT<0) + 0.497*log(Ndep) – 0.137*(pH) – 

0.003*(Organic C) + 0.056*(vegetation: deciduous), Adjusted R
2
: 0.2 (2) 

Table 1 indicates the estimated values of all regression coefficients and their std that 

measures the uncertainty about their estimated values. Amongst all of the coefficients, the 

intercept and the vegetation variable have high standard deviation in comparison with their 

mean. 

Table 1. Estimated regression coefficients and parameters of their variation 

Coefficients Estimates Std.dev 

from fitting 

Coefficient 

of variation 

Intercept 0.133 0.563 4.215 

Precipitation -0.007 0.003 0.429 

FractionT<0 1.537 0.397 0.258 

logNdep 0.497 0.290 0.584 

pH -0.137 0.062 0.448 

OC -0.003 0.001 0.292 

Veg:dec 0.056 0.107 1.908 
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Figure 4 shows the value of the regression residual that measures the error in predicting 

N2O emission using the model in equation 2. The std map shows the uncertain level of the 

regression residual, with its range from 0.1 to 0.5 kgN/ha/yr. 

 

Figure 4. Simulated map of regression residual (left) and standard deviation (right) 

 

4.4. Prediction uncertainty 

 

 The map of the prediction std (Figure 5 right) indicates high degree of dispersion of 

N2O estimate outputs from its mean value (Figure 5 left). N2O prediction varies from around 

0.5 to around 3 kg N/ha/yr at all examined locations in Swedish natural areas. N2O estimate 

generally has high uncertain level because of its high std value compared with its mean value. 

 

Figure 5. Simulated map of N2O emission (left) and standard deviation (right) 

 In Figure 6, we can see that the regression model has the largest uncertainty 

contribution to the overall prediction uncertainty, compared with those of pH and OC. 
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Average contribution of the regression model is about 77%. pH had the smallest contribution 

of about 1% to the total uncertainty in N2O predictions. 

 

Figure 6: Average relative uncertainty contribution 

 

 

5. CONLUSION 

 

In this study, quantification of uncertainty about the model inputs and the model 

parameters was illustrated following the probabilistic framework of which the uncertainty is 

represented by a probabilistic interval. Uncertainty propagation analysis has been was done 

using the Monter Carlo method that is simple in its principle but very effective. 

 

The main results of the case study indicate that: (1) The developed statistical models 

are sufficient to quantify uncertainty about the model inputs and model parameters; (2) 

Uncertainty about nitrous oxide estimate is expressed by the std of the prediction outcomes 

that varies over the study area; (3) Uncertainty in the linear regression model (i.e. the model 

parameter uncertainty) is the most important source of error that propagates to the uncertainty 

in the prediction of soil nitrous oxide emission. 
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